
Lecture 1: moduli of stable marked curves of genus 0

Disclaimer: these are very rough notes. Do not expect them to be exhaustive
and/or detailed. These notes are intended more as a roadmap rather than a manual.
Any comment is always welcome!

Guiding questions:
• What are moduli spaces?
• What are modular compactifications?
• How do we construct moduli spaces?

In this lecture, we sketch answers for the first two questions and we construct a
specific moduli space, namely the moduli space of smooth/stable marked curves of
genus zero.

1.1. Introduction to moduli. Let X be a scheme. Its functor of points is:

X(−) : (Sch)op −→ (Set)
S 7−→ Hom(S,X)

Example 1.1. We list some examples where the functor of points of a scheme is
equivalent to another natural functor:

(1) X ' A1 =⇒ A1(−) : S 7−→ H0(S,OS).

(2) X ' Gm =⇒ Gm(−) : S 7−→ H0(S,OS)∗ (invertible elements inH0(S,OS)).

(3) X ' GLn =⇒ GLn(−) : S 7−→ GLn(H0(S,OS)) (invertible matrices with
values in H0(S,OS)).

(4) X ' Pn, then we have:

Pn(−) : S 7−→
{

L line bundles over S, together with
an embedding L ↪→ O⊕n+1

S of vector bundles

}/
'

(5) X ' Gr(d, n), then we have:

Gr(d, n)(−) : S 7−→
{

F vector bundles of rank d over S,
together with an embedding F ↪→ O⊕n+1

S

}/
'

We can also go backward and, given a certain functor, we can ask ouselves if
such a functor is the functor of points of some scheme.

Definition 1.2. A functor F : (Sch)op → (Set) is represented by a scheme F if
there exists an equivalence of functors

F ' F (−)

Moduli problems are stated using the language of functors: you start with some
type of geometric objects you want to parametrize (e.g. closed subschemes, curves,
surfaces, line bundles over a fixed base, vector bundles over a fixed base), you
construct a functor that sends a scheme S to the set of families of these objects
over S and you ask: is this functor representable?

When a functor F coming from a moduli problem is represented by a scheme F ,
we call F a fine moduli scheme for the moduli problem/functor F .

Example 1.3. Here we collect some examples of moduli problems admitting a fine
moduli space:

1



2

• Moduli problem of vector subspaces of fixed rank r inside an ambient vector
space of dimension d. The associated fine moduli space is the grassmannian
Gr(d, n).

• Moduli problem of closed subschemes inside an ambient projective variety
X (to correctly define what a family of closed subschemes is, you need the
notion of flatness). The associated fine moduli scheme is the Hilbert scheme
HilbX . You can also restrict to closed subschemes having a fixed Hilbert
polynomial, so to get a finite type moduli scheme.

• Moduli problem of coherent subsheaves inside a fixed coherent sheaf E over a
projective scheme X. The associated fine moduli space is the Quot scheme
QuotE/X . As before, you can consider only subsheaves having a certain
Hilbert polynomial, so to get a moduli scheme of finite type.

• Moduli problem of line bundles having degree 0. The associated fine moduli
space is the Picard variety.

We introduce now the moduli problem of n-marked, genus 0 smooth curves:

M0,n : S 7−→

 π : X → S proper and smooth morphism whose
geometric fibres are smooth genus 0 curves, together
with n sections σi : S → X which do not intersect


For n ≥ 3, set:

• M0,3 := pt.

• M0,4 := P1 \ {0, 1,∞}.

• M0,n := (M0,4)n−3 \ ∪∆ij , where ∆ij is the diagonal in M0,4 ×M0,4 em-
bedded via the ith and the jth inclusion. The union is taken over all the
1 ≤ i, j ≤ n− 3 with i < j.

Then we have the following

Proposition 1.4. For n ≥ 3, the schemes M0,n are fine moduli spaces for the
moduli functorM0,n.

Sketch of proof. A key observation is the following: say that you have a moduli
problem F , a candidate fine moduli space F and a family U → F which is an
element of F(F ). Then proving that F is a fine moduli space for F is equivalent
to showing that for every scheme S and every family X → S there exists a unique
morphism g : S → F such that g∗U ' X. The family U → F is usually called a
universal family.

Let π : X → S be a family of smooth curves of genus 0 together with n sections
σi : S → X. Then there exists an S-isomorphism X ' P1 × S such that σn(S) 7→
{∞}×S, σn−1(S) 7→ {1}×S, σn−2(S) 7→ {0}×S. The remaining sections induces
a morphism

σ1 × · · · × σn−3 : S −→M0,n

Construct the universal family over M0,n by taking the product M0,n × P1, with
sections given by the three usual sections {0} × S, {1} × S and {∞} × S and the
diagonal sections δij for 1 ≤ i < j ≤ n− 3. Then you can verify that the pullback
of this family along σ1×· · ·×σn−3 is equal to the original family of marked curves.
Uniqueness also follows easily. �
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1.2. Compactification of moduli spaces. The moduli space M0,n is not proper
(properness is compactness for algebraic geometers who, poor bastards, have to
deal with Zariski topologies). This can be seen directly by looking at the scheme,
but can actually be verified from the moduli functor itself.

Recall the valuative criterion of properness (below, you can interpret the spec-
trum of a discrete valuation ring R as the analogue in algebraic geometry of a small
disk, and the spectrum of the fraction field K as the analogue of the punctured
disk):

Lemma 1.5. A finite type morphism of schemes X → S is proper if and only if
for every discrete valuation ring R with fraction field K, and every commutative
diagram of solid arrows

Spec(K) //

��

X

��

Spec(R) //

;;

S

there exists a unique dotted arrow that makes every subdiagram commute.

In particular, a scheme of finite type (that is, locally defined by a finite number of
equations in a finite number of variables) is proper if and only if every Spec(K)→ X
(think of it as a morphism from a small punctured disk into X) can be extended to
a morphism Spec(R) → X (in other terms, you can always extend the morphism
from the punctured disk to the whole disk).

We can turn this criterion into a definition of properness. What we gain in this
way is that now this definition applies also to functors.

More precisely, we interpret a morphism from (the functor of points of) Spec(K)
to a moduli functor F as an element ξ in F(Spec(K)), a morphism Spec(R) → F
as an element η in F(Spec(R)), and the commutativity of the diagram

Spec(K)

f

��

ξ
// X

Spec(R)

η

;;

as the requirement f∗η = ξ. Then we have:

Definition 1.6. A functor F : (Sch)op → (Set) is proper if for every DVR R with
fraction field K and every object ξ in F(Spec(K)), there exists a unique object η
in F(Spec(R)) such that f∗η = ξ, where f : Spec(K) → Spec(R) is the inclusion
of the generic point.

Remark 1.7. The definition above is ad-hoc for representable functor. Non repre-
sentable functors can sometimes be represented by a Deligne-Mumford stack, after
upgrading the functor to a pseudofunctor with values in groupoids (whatever). In
this case, the definition of properness is a bit more subtle: we do not ask anymore
for the existence of a lifting object η in F(Spec(R)) but rather the lifting object
can exists only after passing to a ramified cover Spec(R′)→ Spec(R).

We can now apply the definition of properness to the moduli functorM0,n. An
object ξ in M0,n(Spec(K)) is by definition a family of n-marked, smooth genus 0
curves over Spec(K) (again, think of it as a family over the punctured disk). We
can identify this family with Spec(K) × P1. The only possible extension of the
family is the trivial one Spec(R) × P1 (we keep using the trick of the existence of
the three distinct sections to trivialize the family of smooth genus zero curves).
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But now we can choose the sections so to make two of them intersect in the central
fibre, from which we deduce thatM0,n is not proper.

Amodular compactification ofM0,n should then be a proper scheme that contains
M0,n as a dense open subscheme and that still represents a moduli functor (in other
terms, the boundary should be made up of points corresponding to degenerations,
in a sense to be made precise, of n-marked, genus 0 smooth curves).

A first idea is to allow the sections to intersect, i.e. to define:

M̃0,n : S 7−→

 Families X → S of genus zero
curves with n sections σi : S → X

which can possibly intersect


This functor actually hasM0,n as subfunctor, but we soon realize that it is not a
separated functor, i.e. does not satisfy the uniqueness part of the definition, as the
next example shows.

Example 1.8. Let R = Spec(k[[t]]), the spectrum of the ring of formal power
series in t (think of it as a little disk with complex coordinate t). Its fraction field is
K = k((t)), the field of invertible formal power series (the ones that has a non-zero
term in degree 0). Consider the family X∗1 → Spec(K) given by Spec(K) × P1 →
Spec(K) with sections (0, 1,∞, t). Let X∗2 → Spec(K) be the family with sections
(0, t−1,∞, 1).

These two families are isomorphic, with isomorphism induced by the projective
linear transformation X → X, Y → tY . But if we take the limits of the sections
in the extended families X1 → Spec(R) and X2 → Spec(R), we end up with two
non-isomorphic central fibres (non-isomorphic in the sense that there is no way to
transform the limiting sections in the central fibre of X1 into the limiting sections
in the central fibre of X2).

Therefore, the family over Spec(K) can be extended to a family over Spec(R) in
at least two distinct ways.

The second idea to compactifyM0,n is still simple but more subtle. Instead of
allowing the sections to coincide, we allow the smooth genus 0 curves to degenerate
to singular curves.

In the example above, we can do the following: we blow up the family X1 →
Spec(R) at the point 0 in the central fibre. In this way we get a family of genus 0
curves whose generic fibre is smooth and the central one is obtained by gluing two
smooth genus 0 curves at one point.

We can then extend the section by taking its proper transform. We end up with
a family of so called stable n-marked, genus 0 curves.

Given a (posibly reducible) curve, define its dual graph as the graph whose
vertices correspond to irreducible components of the curve and whose edges cor-
respond to intersection points of some irreducible components (and obviously join
the vertices associated to those components).

Define a tree of curves as a (possibly reducible) curve whose dual graph is a tree,
i.e. contains no cycles.

Definition 1.9. A stable n-marked curve of genus 0 is a tree of smooth, genus
zero curves such that every irreducible component has at least three special points
(a special point is either a node or a marking).

Then we can define the following functor:

M0,n : S 7−→


Flat and proper morphism π : X → S
together with n sections σi : S → X
such that the geometric fibres are
stable n-marked curves of genus 0
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Proposition 1.10. There exists a fine moduli space M0,n for the moduli problem
M0,n.

We do not give a proof here of this proposition, instead we sketch how to con-
struct M0,n.

We start with M0,4: recall that M0,4 ' P1 \ 0, 1,∞. We claim that M0,4 ' P1.
To prove this, we construct a universal family of stable 4-marked curves of genus
zero.

Consider the trivial family P1 × P1 → P1 with four sections given by P1 × {0},
P1×{1}, P1×{∞} and ∆P1 . We can take the blow-up of P1×P1 at the intersection
points of the first three divisors with the diagonal, i.e. {0} × {0}, {1} × {1} and
{∞} × {∞}.

The scheme P̃1 × P1 is a family of stable, 4-marked curves of genus zero over P1,
and it can actually be proved that it is a universal family over it, hence M0,4 := P1

is a fine moduli space.
A nice feature of this construction is that can be applied again: we claim indeed

that M0,5 ' U0,4, where the latter is the universal family over M0,4 that we
constructed above. To prove this, we can take the fiber product U0,4 ×M0,4

U0,4

together with the four sections coming from the universal family U0,4 →M0,4, and
add a new section given by the diagonal ∆U0,4

.
After a series of blow-up, we eventually end up with a family U0,5 → U0,4 of

stable, 5-marked curves of genus zero, that can be proved to be universal. This
implies that M0,5 ' U0,4.

This argument can be recursively applied, and we get that M0,n ' U0,n−1.
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