
Lecture 3: the boundary of M0,n(Pr, d)

Disclaimer: these are very rough notes. Do not expect them to be exhaustive
and/or detailed. There notes are intended more as a roadmap rather than a manual.
Any comment is always welcome!

Guiding questions:
• What is the structure of the boundary of M0,n and M0,n(Pr, d) ?
• How do these different moduli spaces relate one with each other?

3.1. The boundary of M0,n. Recall that in the first lecture we constructed the
proper, fine moduli scheme M0,n of stable n-marked curves of genus 0. A natural
object to study is the boundary ∂M0,n := M0,n \M0,n: what is its codimension?
What are the irreducible components? And so on.

Example 3.1. Some particular cases:
(1) For n = 4, the boundary ∂M0,4 is equal to the three points {0}, {1} and
{∞}. Therefore, the boundary has codimension 1 and it has 3 irreducible
components.

Given a smooth 4-marked curve of genus zero, we can always assume
that the first three markings correspond to 0, 1 and ∞.

Then we see that the stable curve corresponding to the boundary point
{0} in M0,4 is the one obtained as stable limit of a P1 where the fourth
marking σ4 is approaching the first one σ1: this limit is a pair of P1 glued
at one point such that the markings σ1 and σ4 are on one irreducible com-
ponent, and the markings σ2 and σ3 are on the other one.

It is easy to see that the other boundary points correspond to a different
recombination of the markings on the irreducible components.

(2) For n = 5, we have M0,5 ' U0,4, where the latter is the universal family
over M0,4, and M0,5 ' (P1 \ {0, 1,∞})×2 \ ∆, where ∆ is the diagonal.
Recall that U0,4 was constructed blowing up P1 × P1 (see first lecture).

We deduce that the boundary has codimension 1 and its components are
the proper transform {p}×P1 and P1×{p} for p in {0, 1,∞}, the diagonal
∆ and the three exceptional divisors, i.e. the boundary has 10 irreducible
components.

What are the stable marked curves corresponding to the generic points of
each component? To answer this question, observe that the two coordinates
in M0,5 ⊂M0,5 amount to the last two markings σ4 and σ5.

The generic point of {0} × P1 is obtained as a limit of the family where
the first coordinate of M0,5 ⊂ M0,5 converge to 0, i.e. σ4 converges to σ1:
when they collide, a new component spring out, and σ1, σ4 are sent to this
new component.

We deduce that the generic point associated to this boundary divisor is
a curve with two components, with σ1, σ4 on one side and σ2, σ3 and σ5
on the other.

A similar description holds for the boundary components {1} × P1 and
{∞} × P1.

Consider now the divisor P1 × {0}: the curve associated to the generic
point of this divisor can be obtained by degenerating a smooth marked curve
where σ5 converges to σ1 (just take the generic point of M0,4, consider its
fibre in M0,5 and you obtain such a degeneration).

The limit of this family is easy to describe: when σ1 and σ5 collide, a
new component spring out and σ1 and σ5 are sent to this new component.
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In other terms, the curve associated to the generic point of P1 × {0} has
two components with markings σ1 and σ5 on one side, and the remaining
ones on the other side.

A similar description holds for the boundary components P1 × {1} and
P1 × {∞}.

The generic point of the diagonal ∆ can be obtained by making σ4 and
σ5 coincide: the stable limit has two components with markings {σ1, σ2, σ3}
on one side and {σ4, σ5} on the other.

Finally, consider the exceptional divisor obtained after blowing-up at 0:
its generic point can be obtained by making the generic point (σ4, σ5) of
M0,5 degenerate along a generic direction towards the point (0, 0). There-
fore, the corresponding curve will be the stable limit of the family of smooth
5-marked curves where both σ4 and σ5 are converging to σ1: this limit will
be the union of two P1 with markings {σ2, σ3} one one component and the
remaining ones on the other.

From the above examples we can easily argue how the story goes in the general
case.

Proposition 3.2. The generic point of an irreducible component of the boundary
∂M0,n is a curve with two irreducible components and n-markings distributed on
the two components in such a way to make the curve stable.

Each boundary component has codimension 1 and it is smooth.

Given a partition A ∪ B of {1, 2, . . . , n} with |A|, |B| ≥ 2, we call D(A|B) the
boundary component ofM0,n whose generic point correspond to the curve with the
markings σa for a in A on one component, and the markings σb for b in B on the
other component.

Sketch of proof. The fact that each of this component has codimension 1 can be
seen as follows: we are free to put |A| − 2 markings on the first component (as
we can always assume that two of them together with the node belong to the set
{0, 1,∞}).

Similarly, we are free to decide where to put |B| − 2 markings on the other
component: hence the dimension of this locus is |A|+ |B| − 4 = n− 4, hence it has
codimesion 1 in M0,n.

Another way of seeing this is by means of the gluing morphism: this is the
morphism

M |A|+1 ×M |B|+1 −→M0,n

which sends a pair of points ([C, σ], [C ′σ′) (here σ denotes the collection of all
markings) to the curve obtained by gluing the marking σ|A|+1 of C with the marking
σ′|B|+1 of C ′, with sections given by σ1, . . . , σ|A|, σ

′
1, . . . , σ|B|+1 (to show that this

morphism actually exists and it is well defined, one can either exploit the fact that
all the schemes involved are fine moduli spaces, and construct appropriate families
of curves that induce the desired morphism, or rather work directly with the moduli
functors/stacks and construct a natural transformation of functors).

The gluing morphism constructed above gives an isomorphism of the domain
with the boundary divisor D(A|B). From this we immediately see that the a priori
only-just-a-closed-subscheme D(A|B) is an irreducible, smooth and codimension 1
closed subscheme. �

From this we deduce that ∂M0,2n has
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components, and ∂M0,2n+1 has(
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irreducible components.

Another important morphism between moduli spaces of stable marked curves is
the forgetful morphism: this is a morphism

M0,n −→M0,n−m

for n−m ≥ 3 that sends a curve C with markings σ1, . . . , σn to the same curve C
but with markings σ1, . . . , σn−m.

It can be shown that the fibres of this morphism are reduced. In particular, the
preimage of D(A′|B′) ⊂ M0,n−m in M0,n is formed by the union of the boundary
divisors D(A|B) where A′ ⊂ A and B′ ⊂ B.

The following case
M0,n −→M0,4 ' P1

is quite relevant because, due to the linear equivalence relationD(A′|B′) ∼ D(A′′|B′′)
for every partition A′ ∪ B′ = A′′ ∪ B′′ = {1, 2, 3, 4} (this is a simple consequence
of the fact that any two points in P1 are linearly equivalent), we deduce that also
their preimages in M0,n must be linearly equivalent.

Lemma 3.3. Let i, j, k, l be distinct elements in {1, 2, . . . , n}. Then in Mnbar we
have:

D(A ∪ {i, j}|B ∪ {k, l}) ∼ D(A ∪ {i, k}|B ∪ {j, l})
for any partition A ∪B = {1, . . . , n} \ {i, j, k, l}.

3.2. The boundary of M0,n(P2, d). We move now from M0,n to M0,n(Pr, d).
Recall that, even for n ≥ 3, the scheme M0,n(Pr, d) is not smooth and it is not a
fine moduli space. Nevertheless, it is still irreducible, it is normal and it has at most
finite quotient singularities. It contains an open subscheme M0,n(Pr, d)∗ which is
smooth and that represents the subfunctor of birational stable maps. Consequently,
over this scheme there exists a universal family of birational stable maps.

We will investigate the boundary of M0,n(Pr, d) using our accumulated knowl-
edge of ∂M0,n together with the forget-the-map morphism

F : M0,n(Pr, d) −→M0,n

that sends a stable map (C → Pr) to the marked stable curve Cst: by Cst here
we mean the canonical model of C, i.e. the image of the morphism induced by
the linear series |ωC(σ1 + · · · + σn)| (in simpler terms, this is the morphism that
contracts the unstable components of C [stability of the map C → S does not imply
stability of C!]).

Remark 3.4. To construct the forget-the-map morphism, there are basically two
ways: the first one amounts to show that locally such a morphism exists, using the
local structure of M0,n(Pr, d). We haven’t pursued the investigation of the local
structure of M0,n(Pr, d) in these notes so far, so it does not make much sense to
spend much words on this method.

The other possibility is to define a natural transformation
M0,n(Pr, d) −→M0,n

which only remembers the family of curves out of the family of maps, after possibly
stabilizing it.

Then we can compose this morphism of stacks with the morphismM0,n →M0,n
(which exists because M0,n is a coarse moduli space). Again by definition of coarse
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moduli space, this morphism should factorize throughM0,n(Pr, d)→M0,n(Pr, d),
so that we end up with the desired morphism M0,n(Pr, d)→M0,n.

Lemma 3.5. The forget-the-map morphism is flat of relative constant dimension.

The Lemma above implies that the pullback of boundary divisors D(A|B) of
M0,n are divisors, and by construction they will be in the boundary ofM0,n(Pr, d).
How many irreducible components F−1D(A|B) has?

To answer this question, let ξ be a generic point of F−1D(A|B) (for those not
familiar with the notion of generic point, simply think of a very small but dense open
subscheme of F−1D(A|B)). Over this there exists the generic curve C|ξ together
with a map µ : C|ξ → Pr of degree d.

The generic curve C|ξ is the curve over the generic point of D(A|B), hence it has
two irreducible components. Let di for i = 1, 2 be the degree of µ restricted to the
ith irreducible component. Then there exists an open subscheme in F−1D(A|B)
where every point correspond to a map which has degree d1 on one component and
degree d2 on the second one. It is immediate to check that the closure of this open
subscheme cannot be the whole F−1D(A|B), as most of the morphisms where the
degree of the map restricted to the first component is different from d1 are not
included.

Proposition 3.6. The generic points of the irreducible components of F−1D(A|B)
in M0,n(Pr, d) correspond to morphisms µ : C → Pr of degree d where C is the
generic curve of D(A|B) (hence it has two irreducible components) and the restric-
tion of µ to the components has degree respectively d1 and d2, with d1 + d2 = d

The other boundary components ofM0,n(Pr, d) are those that surjects ontoM0,n
via the forgetful morphism. The generic points of these divisors must correspond
to morphisms µ : C → Pr where one of the two components of C is unstable, i.e.
it has only one or zero markings.

For each of the two cases above, we deduce the existence of an irreducible com-
ponent depending on the degree of the restrictions of the map. Be careful that the
degree of the map on the unstable component must be > 0.

Proposition 3.7. The irreducible components of ∂M0,n(Pr, d) are in bijection with
the choices of partitions A ∪ B = {1, . . . , n} and d1 + d2 = d, with the additional
condition that when |A| or |B| is ≤ 1, then respectively d1 or d2 must be > 0.

As before, this discussion can be made more rigourous by properly exploiting
the gluing morphisms

M0,n+1(Pr, d)×Pr M0,m+1(Pr, e) −→Mn+m(Pr, d+ e)

As you might probably already had guessed, we will not be offering here such a
detailed proof.

There is one last set of morphisms that we have to introduce before moving on
to the next section, i.e. the evaluation morphisms. For 1 ≤ i ≤ n we have:

evi : M0,n(Pr, d) −→ Pr

which sends a stable map (µ : C → Pr) to the point µ(σi). The construction of this
morphism can be obtained by constructing a natural transformationM0,n(Pr, d)→
Pr (as usual, the latter is identified with its functor of points), which is defined just
as above.

But the coarse moduli space M0,n(Pr, d) has the property that every morphism
from the stack to a scheme should factorize through it, hence we obtain the desired
evaluation morphism.
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Lemma 3.8. The evaluation morhism evi : M0,n(Pr, d) → Pr is flat of relative
constant dimension.
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