
Lecture 4: Kontsevich formula, Gromov-Witten invariants and
quantum product

Disclaimer: these are very rough notes. Do not expect them to be exhaustive
and/or detailed. There notes are intended more as a roadmap rather than a manual.
Any comment is always welcome!

Guiding questions:
• How do we use the moduli space of stable maps to prove Kontsevich for-
mula?
• What are Gromov-Witten invariants?
• What is a quantum product?
• How all these things do relate to each other?

4.1. The Kontsevich formula. In this section we sketch a proof for the Kontse-
vich formula. Recall:

Theorem 4.1. The number Nd of degree d rational plane curves passing through
3d− 1 points in general position satisfies:

Nd +
∑(

3d− 4
3dA − 1

)
d2

ANdA
·NdB

· dAdb =
∑(

3d− 4
3dA − 2

)
dANdA

· dBNdB
· dAdB

where the sum is taken over the pairs (dA, dB) such that dA + dB = d and both
numbers are ≥ 1.

Consider the coarse moduli scheme M := M0,3d(P2, d). Fix 3d − 2 points
Q1, . . . , Q3d−2 in P2 and two distinct lines L1 and L2 such that the set of point
formed by the Qi together with L1 ∩ L2 are in general position. Define:

Y := ev−1
1 (Q1) ∩ ev−1

2 (Q2) ∩ · · · ∩ ev−1
3d−2(Q3d−2) ∩ ev−1

3d−1(L1) ∩ ev−1
3d (L2)

Recall that evaluation morphisms are flat of relative constant dimension, hence the
expected codimension of Y is 2 · (3d − 2) + 2 = 6d − 2. The next lemma tells us
that this is the actual codimension of Y .

Lemma 4.2. The scheme Y has the expected codimension, is wholly contained in
M

∗ (the locus of maps with no non-trivial automorphisms) and intersects transver-
sally the boundary components of M .

Let us comment on the last statement: the dimension ofM is 3d−3+3(d+1)−1 =
6d− 1, from which we deduce that Y is a curve, so it makes perfect sense that we
expect Y to intersect the boundary components. The Lemma assures us that it
will do so transversally, hence in a finite number of points.

Consider the morphism f : M →M0,4 that forgets the map and only remembers
σ1, σ2, σ3d−1 and σ3d. We have seen that this is a flat morphism too, and it implies
that the (reducible) divisor D(1, 2|3d − 1, 3d) := f−1D(σ1, σ2|σ3, σ4) is linearly
equivalent to D(1, 3d− 1|2, 3d) := f−1D(σ1, σ3|σ2, σ4). In particular we have:

|Y ∩D(1, 2|3d− 1, 3d)| = |Y ∩D(1, 3d− 1|2, 3d− 4)|(1)

By explicitly counting the intersection points on the two sides we will deduce the
Kontsevich formula.

Remark 4.3. Ok, but where are you doing that intersection product, so to use
the fact that linearly equivalent divisors intersect a curve in the same number of
points? Here is a quick explanation for you: first, the variety M has only finite
quotient singularities, hence it can be proved that it satisfies Poincaré duality or,
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equivalently, there is an intersection product in rational homology that it is dual to
the cup product in cohomology (in general, there is a Poincaré duality for orbifolds).

If you prefer the language of stacks, the fact that M is the coarse moduli space
for a smooth Deligne-Mumford stack implies that it inherits a product strucure on
the rational Chow groups.

Whatever theory you choose, both of them satisfy the property that the inter-
section product in homology/Chow theory of two closed subschemes is equal to the
schematic intersection whenever the latter is transversal and it is wholly supported
in the smooth open locus.

We examine now all the possible intersection points of the left side of 1. From
now on, the irreducible component A is the one containing σ3d−1, σ3d:

• Consider the locus where the map µ : C → Pr has degree 0 on the com-
ponent containing σ3d−1 and σ3d. Take an intersection point with Y : by
construction µ(σ3d−1) ∈ L1 and µ(σ3d) ∈ L2, but the component get con-
tracted! This implies that the component is contracted to L1 ∩ L2, and
none of the other markings can be on this component (otherwise one of the
Qi would coincide with L1 ∩ L2).

Therefore, µ(C) is a degree d rational curve passing through

Q1, . . . , Q3d−2, L1 ∩ L2

On the other hand, given such a curve, there is only one stable map µ :
C → P2 up to isomorphism whose image is the given curve, because the
contracted component has exactly three special points.

Henceforth, the cardinality of the intersection of Y with this divisor is
Nd.

• Consider the locus where the map µ : C → P2 has degree dA on the A
component. If the number of markings distinct from σ3d−1 and σ3d on this
component is > 3dA − 1, we would have that the image µ(CA) is a degree
dA-curve passing through more than 3dA−1 fixed points, hence those points
cannot be in general position, which contradicts our hypothesis on the set
{Q1, . . . , Q3d−2, L1 ∩ L2}.

If we have less than 3dA − 1 markings distinct from σ3d−1, σ3d on CA,
the image curve µ(CB) passes through more than 3dB − 1 of the points
{Q1, . . . , Q3d−2}, so again this contradicts the genericity assumption.

When we have 3dA−1 markings on CA distinct from σ3d−1 and σ3d, the
image of µ(CA) will be a degree dA rational curve passing through 3dA− 1
points in {Q3, . . . , Q3d−2}, and this is ok, and µ(CB) will be a degree dB

rational curve passing through 3dB − 1 points of {Q1, . . . , Q3d−2}.
There are

( 3d−4
3dA−1

)
ways of choosing what markings among the spare ones

should go on the A-component.
Now we have to count how many stable maps µ : C → P2 there are such

that µ(σi) = Qi for i ≤ 3d − 1, µ(σ3d−1 ∈ L1 and µ(σ3d) ∈ L2, assuming
that the markings on each component are now decided.

We have to decide what are the images of the markings σ3d−1, σ3d and of
the node. The point µ(σ3d−1) has to be in L1∩µ(CA), which by the Bezout
theorem has cardinality dA, and µ(σ3d) has to be in L2 ∩µ(CA), which has
the same cardinality. Therefore, we have d2

A possibilities. The node of C is
sent by µ to any of the intersection points of µ(CA) and µ(CB): there are
dAdB of them.

Now we are only left with counting how many curves passes through the
fixed points plus the ones that we have selected as images of σ3d−1, σ3d and
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of the node: there are exactly NdA
NdB

of them.

We have concluded the computation of the right side of 1, so now we move to the
left side:

• Take an element in the intersection Y ∩D(σ1, σ3d−1|σ2, σ3d) such that dA =
0, where dA is the degree of the restriction of µ to CA: then the CA is
contracted to a point, and the fact that it is contained in Y would imply
that the point Q1 belongs to the line L1, which contradicts the general
position assumption.

We deduce that there are no points in Y ∩D(σ1, σ3d−1|σ2, σ3d) such that
dA = 0 or dB = 0.

• Suppose dA > 0 and let mA be the number of markings on CA. If mA >
3dA, then the image curve µ(CA) is a degree dA rational curve passing
through more than 3dA− 1 points among the fixed ones, which contradicts
the general position hypothesis.

On the other hand, ifmA < 3dA, a similar argument applied to the other
component CB gives the same conclusion. We deduce that the elements in
Y ∩D(σ1, σ3d−1|σ2, σ3d) must have 3dA markings on CA and 3db markings
on CB .

• The number of ways of distributing 3dA − 2 markings among the 3d − 4
markings (we are excluding here σ1, σ2, σ3d−1 and σ3d which are already
assigned to the components) is equal to

( 3d−4
3dA−2

)
.

The node can be sent to any of the intersection points of µ(CA) with
µ(CB): there are dAdB of them.

The marking σ3d−1 can go to any of the points in µ(CA) ∩ L1, and
similarly σ3d can go to any of the points in µ(CB) ∩ L2: this gives dAdB

possibilities.
Finally, once the points are choosen, there are exactly NdA

possible im-
ages for µ(CA) and NdB

possible images for µ(CB).

Putting all together, we deduce the Kontsevich formula.

4.2. Gromov-Witten invariants of P2. The moduli space of stable maps can be
used to define Gromov-Witten invariants. Recall that in the proof of Kontsevich
formula we used the evaluation morphisms

evi : M0,n(P2, d) −→ P2

to construct a curve Y inside M0,3d(P2, d). The fact that Y was defined as the
intersection of the preimages of some subvarieties (specifically, points and lines) of
P2 allowed us to give a modular interpretation of this curve: namely, the stable
maps contained in Y were the ones such that µ(σi) = Qi for i = 1, . . . , 3d− 2 and
µ(σ3d−1), µ(σ3d) lay respectively in the lines L1 and L2.

Then we intersected this curve with a divisor to produce, at the very end, a
number.

The main idea behind Gromov-Witten invariants is to do the same thing, but
this time producing a bunch of points inside M0,n(P2, d) rather than curve, so that
we can directly count them.

Several issues are on the way: even if we start with a set of subvarieties Γ1, . . . ,Γn

whose codimensions sum up to dim(M0,n(P2, d)) = n+3d−1, and even if we know
that ev−1

i (Γi) will have the same codimension because of flatness of evi, there is no
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reason why the intersection
ev−1

1 (Γ1) ∩ · · · ∩ ev−1
n (Γn)

should has the expected codimension (i.e. should be transversal).

Remark 4.4. We haven’t mentioned so far the existence of moduli of stable maps
from higher genus curves to a varietyX, but in these other cases way more problems
manifest themselves: namely, the moduli space is no more irreducible, is not purely
dimensional hence is not even clear what is the correct codimension to obtain a
bunch of point and in case in what components we should count the intersection
points.

These type of issues had been solved by Behrend and Fantechi via the definition
of the so-called virtual fundamental class.

The solution to this problem is to move from intersecting subvarieties to intersect
homology classes (in the sense of intersection product), and instead of counting the
points we compute the degree of the resulting dimension zero cycle.

But here comes another problem: no intersection product in homology/chow
groups for singular varieties, in general. Luckily, for orbifolds we do have an inter-
section product for rational chow/homology groups.

Remark 4.5. As already mentioned before, the existence of an intersection product
for rational chow/homology groups is a consequence of the following fact: the mod-
uli stack M0,n(P2, d) of stable maps with n markings and of genus 0 is a smooth
Deligne-Mumford (quotient) stack, hence it admits a well defined intersection prod-
uct for chow/homology groups.

Moreover, such groups, taken with rational coefficients, are isomorphic to the
ones of its coarse moduli space, that is M0,n(P2, d), hence the latter inherits an
intersection product.

Another possible approach to the problem of defining intersection product on
singular varieties is given by operational chow/homology groups.

In this way we are actually able to produce a number out of n subvarieties of P2

whose codimensions sum up to dim(M0,n(P2, d)). We set:

Id([Γ1], . . . , [Γn]) :=
∫

M0,n(P2,d)
ev∗

1 [Γ1] · · · · · ev∗
n[Γn]

Here the integral symbol must be understood in the following sense: look at the
proper morphism p : M0,n(P2, d)→ pt and take the pushforward along p: the result
will be a (rational) multiple of the class of the point, and we take that number as
value of the integral.

Definition 4.6. Let γ1, . . . , γn be elements in A∗(P2) (the latter can be understood
either as rational Chow ring or rational homology ring). Then the associated degree
d Gromov-Witten invariant with n markings is:

Id(γ1, . . . , γn) :=
∫

M0,n(P2,d)
γ1 · · · · · γn

Observe that the definition above is well posed even if the sum of the codimen-
sions/degrees of γi is not equal to dim(M0,n(P2, d)). In that case the integral is
simply equal to zero. Even more, the elements γi don’t have to be homogeneous
for the definition above to make sense.

Remark 4.7. When γi = [Γi] are cycle classes of actual subvarieties which are in
general positions, we can interpret the Gromov-Witten invariants of degree d as the
number of degree d rational plane curves incident to the subvarieties Γi.
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Here is a list of some properties of GW invariants that are rather easy to prove:
(1) GW invariants are Q-linear and symmetric with respect to the entries

γ1, . . . , γn.
(2) The non-zero GW invariants of degree 0 must have three markings.
(3) All GW invariants with more than 3 markings and where one of the entries is

1 = [P2] are zero: to prove this, use the fact that, for n > 2, the pushforward
of 1 along the forget-the-marking morphism

M0,n+1(P2, d) −→M0,n(P2, d)

is zero.
(4) Id(γ1, γ2, γ3) =

∫
P2 γ1 · γ2 · γ3.

(5) Id(γ1, . . . , γn, h) = Id(γ1, . . . , γn)d: to prove this, use the fact that the
pushforward of [ev−1

n+1(H)] along the forget-the-marking morphism is equal
to d[M0,n(P2, d)].

Remark 4.8. Observe that Id(h2, . . . , h2) = Nd, where the number of entries is
3d− 1.

4.3. Quantum product. GW invariants can be used to construct the so called
quantum product in the quantum cohomology ring A∗(P2)⊗Q[[x0, x1, x2]]. A quan-
tum object is usually an enhancement of the original object that depends on some
paramenters xi (or qi) which specialize to the original object when we set xi = 0
for every i.

As we already mentioned, the quantum cohomology of P2 is simply A∗(P2) ⊗
Q[[x0, x1, x2]]. The quantum product of two elements in the quantum cohomology
ring is completely determined by the quantum product γ1 ∗ γ2 of two elements in
A∗(P2). We would like this quantum product to satisfy the following conditions:

(1) 1 = [P2] is the identity for ∗.
(2) Commutativity.
(3) Associativity.
(4) For every element α, β we have α|x=0 ∗ β|x=0 = α · β, where the latter is

the usual intersection product.
Surprisingly, associativity turns out to be not that easy to prove. Set

I(γ1 · · · γn) =
∑
d≥0

Id(γ1 · · · γn)

Let us introduce the following notation:
• For any a = (a0, a1, a2) 3-tuple of natural numbers, set

ha := (ha0 , ha1 , ha2)

• Similarly, set x = (x0, x1, x2) and xa = (x0a0, x
a1
1 , xa2

2 ).
• Finally, define a! = a0!a1!a2!.

Then we define the Gromov-Witten potential as:

Φ :=
∑

a

xa

a! I(ha)

This is actually a finite sum, as can be easily checked using the properties of GW
invariants. Observe that we can take partial derivatives of this potential with
respect to xi, by simply applying the derivation rules for formal power series. In
particular:

Φijk =
∑

a

xa

a! I(ha, hi, hj , hk)
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Then the quantum product of two elements is determined by the following formula:

hi ∗ hj :=
∑

e+f=2
Φije · hf

We can decompose the potential Φ as a sum of its classical part and its quantum
part. Namely, the classical part Φcl corresponds to the cubic polynomial

Φcl =
∑

a

xa

a! I0(ha)

If I+(−) denotes the sum of Id(−) for d > 0, then the quantum part is defined as:

Γ =
∑

a

xa

a! I+(ha)

We can thus decompose the quantum product as follows:

hi ∗ hj =
∑

e+f=2
Φcl

ijeh
f +

∑
e+f=2

Γijeh
f

A straightforward computation implies that the classical part of the quantum prod-
uct its just hi · hj .

Let us show how associativity of the quantum product implies the Kontsevich
formula. We have the equality:

h ∗ (h ∗ h2) = (h ∗ h) ∗ h2

After unpacking the definition of quantum product, we get:
Γ121(h2 +Γ111h+Γ112h

0)+Γ122h
1 = Γ221h+Γ222h

0 +Γ111(Γ121h+Γ122h
0)+Γ112h

2

If we restrict to the coefficients of h0 we deduce:
Γ112Γ121 = Γ222 + Γ111Γ122

Observe that Γ222 = Nd. Actually, after unpacking the various elements of the
equations above, we retrieve the Kontsevich formula.
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