
Lecture 5: Topological quantum field theories and GW-invariants

Disclaimer: these are very rough notes. Do not expect them to be exhaustive
and/or detailed. There notes are intended more as a roadmap rather than a manual.
Any comment is always welcome!

Guiding question:
• What is the connection between GW-invariants, quantum product and
physics?

5.1. Topological quantum field theories. We survey here the concept of topo-
logical quantum field theory (TQFT), how it has arisen from physics and how it
can be mathematically formalized.

5.1.1. Background from physics. In classical mechanics, the evolution of a system
(say, a free particle in some space) is modeled as a path on a variety that represents
space-time. The principle of least action in particular says the following: given
some initial conditions (e.g. initial position and speed of the particle), the path
representing the dynamic of the system from the initial time to a fixed time will
be the one that minimizes the value of a certain functional. The latter functional,
usually called the action, depends on what kind of forces play a role in the system.

We can consider the variety representing space-time as an element of a specific
"geometrical" category: usually symplectic, differential or topological. For instance,
in a general relativistic setting, the "action" of gravity on the evolution of the system
is encoded in the curvature of the space-time, that is in the Riemannian metric of the
variety: in this case, we hence look at the variety as a Riemannian manifold. The
Hamiltonian of the system is usually encoded into a symplectic form, thus in this
case we move into the symplectic realm. When the system is invariant with respect
of the choice of a symplectic or a Riemannian structure, usually what remains is
only the topology of the space-time. We will get back to this in a moment.

In quantum mechanics, we shift from dynamics on the space-time to dynamics
of the wave functions on the space-time. Adopting the Schŕ’odinger approach, the
wave function evaluated at a certain point in the space-time, gives you the prob-
ability that the corresponding event occurs (e.g. the particle being at a specified
position and having a fixed momentum at a certain time). Feynman and others
proposed a variational way, akin to the principle of stationary action, to construct
the wave function, that is to compute the probability of an event: if S denotes the
action functional, you have to "integrate" the values of eiS along all the possible
paths which join your initial state and the final state. The squared modulus of the
resulting complex number (which is called probability amplitude) will give you the
probability that your system evolves into the choosen final state.

Another relevant role is played by entaglement phenomena: start with an ambi-
ent space, and then divide it into two non-communicating subspaces by inserting
some barrier. Then if you begin with a wave function φ defined on your ambi-
ent space, after inserting the barrier you will end up with a wave function which
is a sum of tensor product of wave functions on the subspaces, i.e. something
like

∑
i,j < φi(x), φj(y) > φi(x) ⊗ φj(y) (the states of the two systems, even if

non-communicating, are now entangled).
The coefficients < φi, φj > appearing in the sum above can be explained in terms

of correlation of the states φi and φj : they measures what is the probability for the
two distinct elements of the system of being the first in one state and the second
in another one. These correlation functions can also be computed using the path-
integral approach. One can also generalize this concept to n-correlation functions,
which are usually denoted < φ1(x1), · · · , φn(xn) >.
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Finally, we also have a distinguished state or wave function, the so called vacuum
state: is the state of the system when there is no energy.

The upshot of the preceeding discussion is that a quantum system is encoded by
the following pieces of data:

• A vector space Z(Σ) of wave functions or states for every physical space Σ.
• A way to compute, given a certain evolution of Σ in the time and an initial
state φ0, what is the final state φf of the system. Such evolution may be
represented by a cylinder Σ× I but also by some more complicated n+ 1-
dimensional oriented manifold, as it happens for instance when we divide
the ambient space into other spaces by means of solid barriers (or when
we remove them). In other terms, we have a morphism Z(M) : Z(Σ0) →
Z(Σf ).
• A vacuum state 1 in Z(Σ), corresponding to the evoution from ∅ to Σ. In
particular Z(∅) = C or whatever ground field.

The correlation functions are somehow encoded in the second and the third piece
of data: if the border of M is given by Σ t Σ on the ingoing side and ∅ on the
outgoing side (w.r.t. the time flow), the assumptions of quantum mechanics tells
us that Z(Σ t Σ) = Z(Σ) ⊗ Z(Σ), and the manifold above gives us an element of
(Z(Σ)∨)⊗2, if we interpret the states on Σ with ingoing boundary as the dual of
the states on Σ with outgoing boundary. This element is exactly the 2-correlation
function.

5.1.2. Axiomatization of TFQT. The preceeding discussion should make the fol-
lowing axioms of TQFT pretty natural. The formulation below is due to Atiyah,
who was in turn inspired by the approach of Segal to Conformal Quantum Field
Theory.

Choose a positive orientation for every n-dimensional, closed, orientable manifold
with no boundary. Then the category of n-dimensional cobordisms is the category
whose objects are oriented, closed n-manifolds Σ with no boundary, and whose
morphisms Σ1 → Σ2 are given by n+ 1-dimensional, oriented and closed manifold
M such that ∂M = Σ−1 tΣ2, where Σ−1 denotes the manifold Σ1 negatively oriented.

Definition 5.1. A Topological Quantum Field Theory (TQFT) is a functor Z :
(Cobord)n → (Vect)k satisying the following axioms:

(1) Z is functorial with respect to diffeomorphism of n-manifolds and n + 1-
manifolds preserving the orientation.

(2) Z(Σ−) = Z(Σ)∨.
(3) Z(Σ1 t Σ2) = Z(Σ1)⊗ Z(Σ2).
(4) If M is an n + 1-manifold with ∂M = Σ−1 t Σ3 is obtained by gluing two

manifolds M1 with ∂M1 = Σ−1 t Σ2 and M2 with ∂M2 = Σ−2 t Σ3 at Σ2,
then Z(M2) ◦ Z(M1) = Z(M).

(5) Z(∅n) = k.
(6) Z(∅n+1) = id.
(7) Z(Σ× I) = id.

It is an easy consequence of the axioms above that Z must also be homotopy
invariant. Observe that Z defines for every n + 1-dimensional, oriented, closed
manifold M with no boundary a topological invariant Z(M).

5.1.3. TQFT and Frobenius algebras. From now on we will focus on the case n = 1.
Let Z be a TQFT and set A := Z(S1). This vector space has a multiplication

• : A⊗A→ A induced by the 2-manifold usually called pair of pants, i.e. a sphere
with three punctures, two of them with incoming orientation and the other with
outgoing orientation. Playing around with the axioms of TQFT one can prove that
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(A, •, 1) has the structure of k-algebra, where the element 1 is determined by the
sphere having one puncture with outgoing orientation.

We also have a trace morphism tr : A → k given by the sphere having one
puncture with incoming orientation, and a pairing <,>: A ⊗ A → k defined by
the two-punctured sphere, where the punctures have incoming orientation. Playing
around with the axioms of TQFT one can prove:

Proposition 5.2. The k-algebra (A, •, 1) is a Frobenius algebra, i.e. a commu-
tative, associative k-algebra with unity endowed with a trace form tr : A → k that
defines a non-degenerate symmetric pairing < a, b >:= tr(a • b).

Observe that the pairing induces an isomorphism s : A ' A∨.
Consider the surfaces of genus 1 with one incoming puncture. This defines a

morphism < − >1: A → k (we can interpret it as the "expectation value" that a
state evolves into the vacuum state after inserting and removing a barrier). This
surface can be constructed by gluing two pair of pants with opposite orientation
and then closing the outgoing boundary with a disk. The axioms of TQFT then
implies that:

< φ >1=< (σ−1 ◦ • ◦ σ)(φ) >
In other terms, we can reconstruct this quantity from the structure of Frobenius
algebra A. Actually, more is true:

Theorem 5.3 (Abrams). There is an equivalence of categories
(1D− TQFT) ' (FrobAlg)

5.2. TQFT and quantum cohomology.

5.2.1. Small quantum cohomology. Let X be a smooth projective variety over C
with vanishing odd cohomology (this assumption can be dropped but the theory
below need to be slightly modified) and define the Novikov ring Λ as the subring

Λ ⊂ C{{eδ}}, δ ∈ H2(X)
of formal power series

∑
δ aδe

δ satifying the following property: for every real
number C, among all the δ such that deg(δ) ≤ C only finitely many coefficients aδ
are non-zero.

Here H2(X) := H2(X,Z)/tors and H•(X) denotes the singular cohomology with
C-coefficients of X. We use the notation eδ so to suggest the multiplication rule
eδ · eγ = eδ+γ and enδ = (eδ)n for any integer n.

We define the small quantum cohomology ring QH•(X) as the vector space
H•(X)⊗ Λ endowed with the small quantum product

α ∗ β :=
∑

δ∈H2(X)

eδ

 ∑
γ∈H•(X)

Iδ(α, β, γ)γ∨


where:
(1) Iδ(α, β, γ) :=

∫
M0,3(X,δ) ev

∗
1α · ev∗2β · ev∗3γ is the analogue of the GW-

invariants that we discussed in Lecture 4, with the difference that the target
variety here is no more P2 but a general smooth variety X, hence we cannot
use the degree to specify the cycle class of the image of the stable maps but
directly the cycle class δ in H2(X).

(2) γ∨ is the dual of γ in H•(X) with respect to the intersection pairing form.
Observe that the small quantum product and the small quantum cohomology ring
differs from the quantum product and quantum cohomology introduced in Lecture
4, although the key ingredients for its definition are again GW-invariants.
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The small quantum product extends in an obvious way to the whole QH•(X).
Moreover, we can also extend the intersection pairing on H•(X) to QH•(X) by
setting < αeδ, βeγ >:= 0 for δ 6= 0 or γ 6= 0.

Proposition 5.4. The small quantum cohomology ring QH•(X) together with the
quantum product ∗ and the intersection pairing <,> is a Frobenius algebra.

The Proposition above combined with Abrams classification result shows that
the small quantum cohomology ring can be used to construct a 1D-TQFT. In
particular we have Z(S1) = QH•(X) and the pairings basically depends only on
the Gromov-Witten invariants of X.
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